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Abstract—Cooperative spectrum sensing has been shown to
greatly improve the sensing performance in cognitive radio
networks. However, if the cognitive users belong to different
service providers, they tend to contribute less in sensing in order
to achieve a higher throughput. In this paper, we propose an
evolutionary game framework to study the interactions between
selfish users in cooperative sensing. We derive the behavior
dynamics and the stationary strategy of the secondary users,
and further propose a distributed learning algorithm that helps
the secondary users approach the Nash equilibrium with only
local payoff observation. Simulation results show that the average
throughput achieved in the cooperative sensing game with more
than two secondary users is higher than that when the secondary
users sense the primary user individually without cooperation.

I. INTRODUCTION

With the emergence of new wireless applications and de-
vices, the last decade has witnessed a dramatic increase in
the demand for radio spectrum, which has forced government
regulatory bodies, such as the Federal Communications Com-
mission (FCC), to review their policies. Since the allocated
frequency bands to some licensed spectrum holders experience
very low utilization [1], the FCC has been considering opening
the under-utilized licensed bands to secondary users on an
opportunistic basis with the aid of cognitive radio technology
[2].

In order to protect the primary users from interference due
to secondary users’ operation, spectrum sensing has become
an essential function of cognitive radio devices [3]. Recently,
cooperative spectrum sensing with relay nodes’ help and multi-
user collaborative sensing has been shown to greatly improve
the sensing performance [4]-[10]. In [4], the authors proposed
collaborative spectrum sensing to combat shadowing/fading
effects. [5] proposed light-weight cooperation based on hard
decisions to reduce the sensitivity requirements. The authors
of [6] showed that cooperation in sensing can reduce the
detection time of the primary user and increase the overall
agility. How to choose the secondary users for cooperation
was investigated in [7]. The authors of [8] studied the design
of sensing slot duration to maximize the secondary through-
put. Two energy-based cooperative detection methods using
weighted combining were analyzed in [9]. Spatial diversity in
multiuser networks to improve spectrum sensing capabilities
of centralized cognitive radio networks were exploited in [10].

In most of the existing cooperative spectrum sensing

schemes [4]-[10], it is generally assumed that all secondary
users belong to the same authority. They will voluntarily fuse
their sensing outcomes to a centralized controller (e.g., the
secondary base station), which makes a final decision on
whether the primary user is present or not. However, with the
emerging applications of mobile ad hoc networks envisioned
in civilian usage, the secondary users may be selfish and do
not serve a common goal. Sensing a licensed frequency band
also consumes a certain amount of energy and time which
may alternatively be diverted to data transmissions. If multiple
secondary users occupy different sub-bands of one primary
user and can overhear the other users’ sensing outcomes, they
tend to take advantage of the others and wait for the others
to sense the primary user so as to reserve more time for their
own data transmission.

In order to study the interactions between the selfish users
and their stationary strategy in the long run, in this paper
we propose to model the cooperative spectrum sensing as an
evolutionary game. If some secondary users agree to cooperate
in sensing, the cost can be equally shared among them, while
the users who do not take part in cooperative sensing can
enjoy a free ride. However, if no user senses the primary user,
then all of them will be punished by a very low payoff. By
using replicator dynamics [14], we obtain the equations that
govern the users’ behavior dynamics, and further derive the
equilibrium strategy when all secondary users are assumed ho-
mogeneous in their individual data rates and the received SNRs
of the primary user (e.g., the secondary users are located far
away from the primary base station and clustering together).
Moreover, we develop a distributed learning algorithm that
can help the secondary users approach their optimal strategy
with only their own payoff history. Simulation results show
that as the number of secondary users and the cost of sensing
increases, the users tend to have less incentive to contribute
to the cooperative sensing. However, they can still achieve a
higher average throughput in the spectrum sensing game than
that of the single-user sensing, if there are more than two
secondary users in the cognitive radio network.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, we formulate
the cooperative spectrum sensing as an evolutionary game,
analyze the behavior dynamics of the secondary users, and
develop a distributed learning algorithm that approaches equi-
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librium. Simulation results are shown in Section IV. Finally,
Section V concludes the paper.

II. SYSTEM MODEL

A. Hypothesis of Channel Sensing

When a secondary user is sensing the licensed spectrum
channel in a cognitive radio network, the received signal r(t)
from the detection has two hypotheses when the primary user
is present or absent, denoted by H1 and H0, respectively. Then,
r(t) can be written as

r(t) =
{

hs(t) + w(t), if H1;
w(t), if H0.

(1)

In (1), h is the gain of the channel from the primary user’s
transmitter to the secondary user’s receiver; s(t) is the signal
of the primary user, which is assumed to be an i.i.d. random
process with mean zero and variance σ2

s ; w(t) is an additive
white Gaussian noise (AWGN) with mean zero and variance
σ2

w. s(t) and w(t) are assumed to be mutually independent.
Assume we use an energy detector to sense the licensed

spectrum, then the test statistics T (r) is defined as

T (r) =
1
N

N∑
t=1

|r(t)|2, (2)

where N is the number of collected samples.
The performance of licensed spectrum sensing is character-

ized by two probabilities, the probability of detection, PD,
and the probability of false alarm, PF . If the noise term
w(t) is assumed to be circularly symmetric complex Gaussian
(CSCG), the probability of false alarm PF is given by [12]

PF (λ) = Q
((

λ

σ2
w

− 1
)√

N

)
, (3)

where λ is the threshold of the energy detector, and Q(·)
denotes the complementary distribution function of the stan-
dard Gaussian. Similarly, if we assume the primary signal is
a complex PSK signal, then the probability of detection PD

can be approximated by [12]

PD(λ) = Q
((

λ

σ2
w

− γ − 1
)√

N

2γ + 1

)
, (4)

where γ = |h|2σ2
s

σ2
w

denotes the received signal-to-noise ratio
(SNR) of the primary user under H1.

Given a target detection probability P̄D, the threshold λ
can be derived, and the probability of false alarm PF can be
further rewritten as

PF (P̄D, N, γ)
�
= Q

(√
2γ + 1Q−1(P̄D) +

√
Nγ
)

, (5)

where Q−1(·) denotes the inverse function of Q(·).
B. Throughput of a Secondary User

When sensing the primary user’s activity, the secondary
users cannot perform data transmission at the same time. If we
denote the sampling frequency by fs and the frame duration
by T , then the time duration for data transmission is given
by T − δ(N), where δ(N) = N

fs
represents the time spent in

sensing. When the primary user is absent and no false alarm
is generated, the average throughput of the secondary user is

RH0(N) =
T − δ(N)

T
(1 − PF )CH0 , (6)

Fig. 1: System model

where CH0 represents the data rate of the secondary user under
H0. When the primary user is present while not detected by
the secondary user, the average throughput of the secondary
user is

RH1(N) =
T − δ(N)

T
(1 − PD)CH1 , (7)

where CH1 represents the data rate of the secondary user under
H1.

If we denote PH0 as the probability that the primary user
is absent, then the total throughput of the secondary user is

R(N) = PH0RH0(N) + (1 − PH0)RH1(N). (8)
Then, from the secondary user’s perspective, he/she wants to
maximize his/her total throughput (8), given that PD ≥ P̄D.
As mentioned in [8], in practice the target detection probability
P̄D are required by the primary user to be close to 1; moreover,
we usually have PH0 close to 1 and CH1 < CH0 (due to
the interference from the primary user to the secondary user).
Therefore, (8) can be approximated by

R̃(N) = PH0RH0(N) = PH0

T − δ(N)
T

(1 − PF )CH0 . (9)

We know from (9) that there is a tradeoff for a secondary user
to choose an optimal N that maximizes the throughput R̃(N).
In order to keep a low PF with a smaller N , a good choice is
cooperative spectrum sensing with the other secondary users
in the same licensed band.

III. SPECTRUM SENSING GAME

A. Problem Formulation

A snapshot of a cognitive radio network is shown in Fig.
1, where the secondary users are clustering together, but far
away from the primary base station. The cooperative spectrum
sensing is shown in Fig. 2. We assume that the entire licensed
band is divided into K sub-bands, and each secondary user
operates exclusively in one of the K sub-bands when the
primary user is absent. The transmission time is slotted into
intervals of length T . Before each data transmission, the
secondary users need to sense the primary user’s activity. The
secondary users can jointly sense the primary user’s presence,
and exchange their sensing results via a narrow-band signalling
channel, as shown in Fig 2. In this way, each of them can
spend less time detecting while enjoying a low false alarm
probability PF via some decision fusion rule [11], and the
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Fig. 2: Cooperative spectrum sensing

spectrum sensing cost (N , or δ(N)) can be shared by whoever
is willing to contribute (C).

However, the secondary users may not serve for a common
authority, and they will act selfishly by pursuing as high a
throughput as possible. Once a secondary user is able to
overhear the detection results from the other users, he/she
tends to take advantage of that by denying (D) to take part
in spectrum sensing. In this scenario, each secondary user in
the cognitive radio network still achieves the same false alarm
probability PF , while the users who deny to join in cooperative
sensing will have more time for their own data transmission.
The secondary users are punished by a very low throughput if
no one cooperates in sensing, in the hope that someone else
will sense the spectrum.

Therefore, we can model the spectrum sensing as a non-
cooperative game. The players of the game are the secondary
users, denoted by S = {s1, · · · , sK}. Each player sk has the
same action/strategy space, denoted by A = {C,D}. The pay-
off function is defined as the throughput of the secondary user.
Assume that the secondary users contributing in cooperative
sensing forms a set, denoted by Sc = {s1, · · · , sJ}. Denote the
false alarm probability of the cooperative sensing among set
Sc with fusion rule “RULE” and a target detection probability

P̄D by PSc

F

�
= PF (P̄D, N, {γi}i∈Sc

, RULE). Then the payoff
for a contributor sj ∈ Sc, can be defined as

ŨC,sj
= PH0

(
1 − δ(N)

|Sc|T
)

(1 − PSc

F )Csj
, if |Sc| ∈ [1,K],

(10)
where |Sc|, i.e., the cardinality of set Sc, represents the number
of contributors, and Csj

is the data rate for user sj under
hypothesis H0. Here we assume that the cost of sensing, δ(N),
is equally shared by all contributors, and N is a large number
agreed by the group of contributors to guarantee a low PF .
The payoff for a denier si /∈ Sc, who selects strategy D, is
then given by

ŨD,si
= PH0(1 − PSc

F )Csi
, if |Sc| ∈ [1,K − 1], (11)

since si will not spend time in sensing. If no secondary user
contributes to spectrum sensing and waits for the others to
sense, i.e., |Sc| = 0, from (5), we know that limN→0 PF =
1, especially for the low received SNR regime and high P̄D

requirement. In this case, the payoff for a denier becomes

ŨD,si
= 0, if |Sc| = 0. (12)

The decision fusion rule can be selected from the logical-OR
rule, logical-AND rule, and majority rule [8]. In this paper,
we mainly focus on the logical-OR rule to derive the PSc

F , but
the other fusion rules could be similarly analyzed. Denote the
detection and false alarm probability for a contributor sj ∈ Sc

by PD,sj
and PF,sj

, respectively. Then, under OR rule we
have the following

PD = 1 −
∏

sj∈Sc

(1 − PD,sj
), (13)

and
PF = 1 −

∏
sj∈Sc

(1 − PF,sj
). (14)

Hence, given a P̄D for set Sc, each individual user’s target
detection probability can be expressed as

P̄D,sj
= 1 − (1 − P̄D)(1/|Sc|). (15)

Then, from (5) we can write PF,sj
as

PF,sj
= Q

(√
2γsj

+ 1Q−1(P̄D,sj
) +

√
N/|Sc|γsj

)
, (16)

and can further obtain PSc

F by substituting (16) in (14).

B. Analysis of the Game

Since the data transmission for each secondary user is
continuous, the spectrum sensing game is played repeatedly
and will evolve over time. Therefore, we can use evolutionary
game theory to analyze the evolutionary dynamics of the
players and further derive the equilibrium [14].

1) Evolution Dynamics of the Sensing Game: The devel-
opment of evolutionary game theory is a major contribution of
biology to competitive decision making. The key concept of
evolutionary game is replicator dynamics, which describes the
evolution of strategies in time. Specifically, consider a large
population of homogeneous individuals who are programmed
to the same set of pure strategies A in a symmetric game
with payoff function U . At time t, let pai

(t) ≥ 0 be the
number of individuals who are currently programmed to pure
strategy ai ∈ A, and let p(t) =

∑
ai∈A pai

(t) > 0 be the total
population. Then the associated population state is defined
as the vector x(t) = {xa1(t), · · · , x|A|(t)}, where xai

(t) is
defined as the population share xai

(t) = pai
(t)/p(t). By

replicator dynamics, the evolution dynamics of xai
(t) is given

by the following differential equation

ẋai
= ε[Ū(ai, x−ai

) − Ū(x)]xai
, (17)

where Ū(ai, x−ai
) is the instantaneous average payoff of

the individuals using ai, Ū(x) is the instantaneous average
payoff of the whole population, and ε is some positive number
representing the time scale. The intuition behind (17) is as
follows: if strategy ai results in a higher payoff than the
average level, the population share using ai will grow, and the
growth rate ẋai

/xai
is proportional to the difference between

strategy ai’s current payoff and the current average payoff in
the entire population. By analogy, we can view xai

(t) as the
probability that one player in a symmetric game adopts pure
strategy ai, and x(t) can be equivalently viewed as a mixed
strategy for that player.

Then, we can generalize (17) to the spectrum sensing game
with heterogeneous players, as Csi

may vary among different
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users. Denote the probability that user sj adopts strategy h ∈
A at time t by xh,sj

(t), then the time evolution of xh,sj
(t) is

governed by the following differential equation:

ẋh,sj
=

1
Ūsj

(x)
[
Ūsj

(h, x−sj
) − Ūsj

(x)
]
xh,sj

, (18)

where Ūsj
(h, x−sj

) is the average payoff for player sj using
pure strategy h, and Ūsj

(x) is sj’s average payoff using mixed
strategy xsj

.
2) Equilibrium Analysis: If each user sj maximizes his/her

total payoff by choosing the optimal probability of being
a contributor (or a denier), xh,sj

, where h = C (or D),
the outcome of the game can be characterized by the Nash
Equilibrium [14]. In Nash equilibria (NE), no player can
gain a higher payoff value by unilaterally deviating from the
equilibrium strategy, given that the other players adopt their
equilibrium strategies.

The steady-state solution to (18) given any initial condition
is defined as the evolutionary stable strategy (ESS). It is shown
[14] that the ESS is a refinement of NE. It is generally difficult
to solve equation (18) and obtain the equilibrium of the game
if the number of users is large. Therefore, in this section, we
first analyze a special symmetric sensing game to get some
insight, and next develop a distributed learning algorithm for
the players to achieve the NE in the long run.

As shown in Fig. 1, all the secondary users are assumed
to be located far away from the primary base station and
clustering together, so the received γsj

’s are very low and
similar to each other. In order to guarantee low PF given a
target P̄D, the number of sampled signals N should be large.
Under these assumptions, we can approximately view PSc

F as
the same for different Sc’s, denoted by P̂F . Further assume
that all users have the same data rate, i.e. Csi

= C, for all
si ∈ S. Then, the payoff functions defined in (10)-(12) become

UC(J) = U0

(
1 − τ

J

)
, if J ∈ [1,K], (19)

and
UD(J) =

{
U0, if J ∈ [1,K − 1];
0, if J = 0,

(20)

where U0 = PH0(1 − P̂F )C, J = |Sc|, and τ = δ(N)
T .

According to the symmetric setting, (17) can be applied
to the special case as all players have the same evolution
dynamics and equilibrium strategy. Denote x as the probability
that one secondary user contributes to spectrum sensing, then
the average payoff for pure strategy C can be obtained as

ŪC =
K−1∑
j=0

(
K − 1

j

)
xj(1 − x)K−1−jUC(j + 1), (21)

where
(
K−1

j

)
xj(1 − x)K−1−j is the probability that J + 1

users contributes to cooperative sensing. Similarly, the average
payoff for pure strategy D is given by

ŪD =
K−1∑
j=0

(
K − 1

j

)
xj(1 − x)K−1−jUD(j). (22)
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Fig. 3: Probability of being a contributor vs. τ

Since the average payoff Ū = xŪC + (1 − x)ŪD, then (17)
becomes

ẋ = εx(1 − x)(ŪC − ŪD). (23)

In equilibrium x∗, any player will not deviate from the optimal
strategy, indicating ẋ∗ = 0, or Ū∗

C = Ū∗
D. Then, by equating

(21) and (22), we can have the following K th-order equation

τ(1 − x∗)K + Kx∗(1 − x∗)K−1 − τ = 0, (24)

and further solve the equilibrium.
3) Learning Algorithm for Nash Equilibrium: From (18),

we can derive the strategy adjustment for the secondary user
as follows. Denote the pure strategy taken by user sj at time
t by Asj

(t). Define an indicator function 1h
sj

(t) as

1h
sj

(t) =
{

1, if Asj
(t) = h;

0, if Asj
(t) �= h.

(25)

At some interval mT , we can approximate Ūsj
(h, x−sj

) by

Ūsj
(h, x−sj

) .=

∑
t≤mT Ũsj

(Asj
(t), A−sj

(t))1h
sj

(t)∑
t≤mT 1h

sj
(t)

, (26)

where Ũsj
(Asj

(t), A−sj
(t)) is the payoff value for sj as

determined by (10)-(12). Similarly, Ūsj
(x) is approximated

by
Ūsj

(x) .=
1
m

∑
t≤mT

Ũsj
(Asj

(t), A−sj
(t)). (27)

Then, the derivative ẋh,sj
(mT ) can be approximated by

substituting (26) and (27) into (18). Therefore, the probability
of user sj taking action h can be adjusted by

xh,sj
((m + 1)T ) = xh,sj

(mT ) + ηsj
ẋh,sj

(mT ) , (28)

with ηsj
being the step size of adjustment chosen by sj . We

will demonstrate the convergence of the learning algorithm in
the next section.

IV. SIMULATION RESULTS AND ANALYSIS

The parameters used in the simulation are as follows. We
assume that the primary signal is a baseband QPSK modulated
signal, the sampling frequency is fs = 4MHz, and the frame
duration is T = 5 ms. The probability that the primary user is
inactive is set as PH0 = 0.9, and the required target detection
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Fig. 4: Average throughput per user vs. τ

probability P̄D is 0.95. The noise is assumed to be a zero-
mean CSCG process. The received γsj

’s are in the low SNR
regime, with an average value of −12 dB.

We first illustrate the optimal equilibrium strategy for the
secondary users assuming a homogeneous setting as in Section
III-B2, where the data rate is C = 1 Mbps. In Fig. 3, we
show the optimal probability of being a contributor x∗ for a
network with different number of secondary users. The x-axis
represents τ = δ(N)

T , the ratio of sensing time duration over
the frame duration. From Fig. 3, we can see that x∗ decreases
as τ increases. For the same τ , x∗ decreases as the number
of secondary users increases. This indicates that the incentive
of contributing to the cooperative sensing drops as the cost of
sensing increases and more users exist in the network. This is
because the players tend to wait for someone else to sense the
spectrum and can then enjoy a free ride, when they are faced
with a high sensing cost and more counterpart players.

In Fig. 4, we show the average throughput per user when
all users adopt the equilibrium strategy. We see that there is a
tradeoff between the cost of sensing and the throughput. The
optimal value of τ is around 0.15, and will slightly increase
as the number of user increases. This is because the false
alarm probability PF in (14) tends to increase as the number
of user increases. In order to have a low PF , the users need to
collect more samples for better detection. Although the cost
of sensing increases, as more users share the sensing cost,
the optimal average throughput per user still increases. We
also plot the optimal throughput for the single-user sensing
(dotted line “single”) for comparison. It is interesting that the
average throughput values for games with more than 2 users
are all higher than that of the single-user sensing, while the
throughput for the 2-user game is not. The reason is that when
there are more than 2 users in the game, the chance that no
user contributes to sensing is smaller; it is more likely that
neither user senses the spectrum in the 2-user game.

We finally show the learning curve for the probability of
being a contributor in a 3-player game in Fig. 5, with τ = 0.5,
the step-size of learning ηsj

= 0.002, γ1 = −13 dB, γ2 = −12
dB, and γ1 = −11 dB. We see that in the long run, all three
users can gradually reach the equilibrium strategy, which is
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about 0.44.

V. CONCLUSION

In this paper, we propose an evolutionary game-theoretical
framework for distributed cooperative sensing over cogni-
tive radio networks. By employing the theory of replicator
dynamics, we study the behavior dynamics of secondary
users, and further propose a distributed learning algorithm
that gradually converges to the Nash equilibrium. From the
simulation results, the average throughput per user in a K-
user sensing game (K > 2) is still higher than that in the
single-user sensing.
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